BIOLOGICAL AND ENGINEERING IMPACTS OF CLIMATE CHANGE ON SLOPES: BIONICS

Dr Stephanie Glendinning Dr Paul Hughes Newcastle University

BACKGROUND

- Earthworks slopes constitute major part of the UK infrastructure asset
 - (£20B of a total £60B for highways alone)
- Failures cost significant £

 (£50m for highway maintenance in 1988/9)
- Maintenance costs a fraction of emergency repairs

(femergency = 10 x maintenance)

BACKGROUND 2

- Water is a key factor controlling the stability of slopes:
 - Pore water pressure
 - Shrink-swell
 - ■Softening
 - Cracking
 - Erosion
 - ■Vegetation

Dr Stephanie Glendinning, Newcastle University

BACKGROUND 3

- Climate change predicts for the UK:
- Hotter, drier summers
 - shrinkage, cracking, loss of vegetation
- Followed by:
- More intense periods of rainfall
 - swelling, infiltration, increased water pressure, erosion, (flooding)

STAKEHOLDERS

- 11 industrial partners, including
 - Network Rail
 - Railway Safety and Standards Board
 - Metronet Rail SSL (LUL)
 - Highways Agency
 - British Waterways
- 6 Universities

Dr Stephanie Glendinning, Newcastle University

STAKEHOLDER REQUIREMENTS

- Prediction, planning and preparation or
- ■What, when and how?
- Cost

AIMS OF THE PROJECT

- Establish a facility for engineering and biological research
- Improve basic understanding of the effects of climate on slopes
- Improve modelling capability to examine long-term impacts

Dr Stephanie Glendinning, Newcastle University

ANTICIPATED OUTCOMES

A full-scale, fully instrumented embankment representative of UK infrastructure, planted with representative vegetation with the facility to control climate over half of its length;

A validated hybrid computer model capable of predicting embankment performance under predicted future climates

A methodology for identifying parts of the UK infrastructure that require further investigation

A medium to long term research strategy, including some specific needs-based 'spin-off' projects

ENGINEERING OUTCOMES

- Construction of a fully instrumented embankment to stakeholder specifications
- Quantification of the effects of planting, rainfall, heating and compaction levels on embankment condition
- Production of a database of embankment performance data and fill characteristics for numerical modelling and future researchers

KEY MESSAGES

- Clear distinction between sections in terms of density and strength
- Soil suction tests indicate high (-600kPa)
 ve pore water pressures in well compacted (Highway Specification)
 panels compared to low (less than 200kPa) in poorly compacted panels

EPSRC

MODELLING

- Numerical Modelling
 - Partial coupling of SHETRAN (hydrological model) with FLAC (mechanical model)
 - Development of fully coupled model based on T-P Flow in FLAC
 - Incorporation of a partially saturated soil model
- Centrifuge modelling

- Basic coupling of SHETRAN and FLAC
- SHETRAN provides pore water pressures as a response to daily climatic inputs
- FLAC simulates the response of the embankment to the daily changes in pore pressures
- Examined the effect of underdrainage on longterm behaviour

THE FUTURE OF BIONICS

- The BIONICS embankment provides a facility for collaborative research
- The numerical models provide the means of applying the research findings in other situations:
- Analysis of 'real' cases from UK and worldwide

